Где расположена гладкая мышечная ткань. Функции гладкой мышечной ткани. Гладкая мышечная ткань: строение. Классификация и типы мышечных волокон

Вы моргнули, повернули голову, вздохнули, посмотрели вдаль, что-то сказали. Каждую минуту в вашем организме сокращается множество мышц тела . Добавьте к этому то, что сердце бьется, в животе урчит, мочеточник мягко препровождает мочу от почки к мочевому пузырю, а сосуды постоянно поддерживают определенное артериальное давление. Древние говорили: «In motu vita est», что значит «В движении жизнь».


Гистологи выделяют 3 вида мышечной ткани : поперечно-полосатую скелетную, поперечно-полосатую сердечную и гладкую. В основных своих чертах они похожи, но именно нюансы, именно тонкости их разнят до неузнаваемости. Поперечно-полосатая скелетная мышечная ткань образует те самые мышцы, которые переставляют ваши ноги, протягивают вашу руку за чашечкой кофе, сгибают и выпрямляют ваше тело. Если заглянуть в окуляр светового микроскопа, то вы не увидите клеток (картинка I). Действительно, мы на 40% состоим не из клеток (ведь приблизительно столько приходится на массу скелетной мускулатуры). Когда-то на этом месте находились клетки, но в те времена мы еще были эмбрионами. А по мере роста и развития цитоплазма их сливалась (рис. 24), обтягиваясь единой мембраной - сарколеммой (4), ядра (3) становились общими, образовывались длинные многоядерные трубчатые волокна - симпласты (1), из которых и состоит поперечно-полосатая скелетная ткань в конечном варианте.

Картинка I. Поперечно-полосатая мышца


Кроме того, под световым микроскопом совершенно отчетливо видно, что название себя прекрасно оправдывает: поперек волокна, чередуя друг друга, располагаются темные и светлые полосы (2). Чтобы лучше рассмотреть, стоит увеличим сильнее симпласт. Схематично он изображен на рис 25. В цитоплазме (3) непосредственно под тонкой сарколеммой (2) расположены вытянутые ядра (4). Соседние мышечные волокна «переслоены» соединительной тканью - эндомизием (1) и многочисленными сосудиками (11). Оказывается, расчерчена не вся цитоплазма. В нее погружены протянутые вдоль всего симпласта многочисленные белковые полоски - миофибриллы (10). Между ними никакой «полосатости» нет: их параллельные пучки (12) окружены митохондриями, эндоплазматической сетью и некоторыми другими органеллами.


Теперь внимательнее рассмотрим строение миофибриллы , например, нижнюю на схеме: куча всяких полосок. Как-нибудь их обозначим для ясности. Толстый светлый промежуток, поделенный пополам тонкой линией, называется I-диском (8), а линия обозначается буквой Z (так называемая Z-линия -6). Два расположенных рядом темных столбика объединяют в А-диск (5), а между ними хорошо видно светлую Н-полоску (7). Участок между рядом расположенными Z-линиями носит название - саркомер (9), который и стоит изучать под электронным микроскопом, чтобы наконец разобраться во всех этих дисках, полосках и линиях (рис. 26, а).

Белки миофибриллы представлены двумя сократительными белками. Более тонкие нити белка актина держатся параллельно друг другу, скрепляясь вместе плоской пластинкой, которая и была названа гистологами Z-линией. Актин не способен преломлять свет дважды, и это качество гистологи решили назвать изотропностью. Стоит запомнить, что изотропность и делает участок около Z-линии светлым, а это не что иное, как I-диск. Другой белок называется миозином. Он толще, представительнее и, что привело в восторг мировую физическую общественность, преломляет дважды пучок проходящего через него света, становясь темнее. Это свойство называется анизотропностью, а отсюда и название - А-диск. Нити белка актина и белка миозина взаимно проникают друг в друга. Средняя часть миозиновой «стопки» свободна от контакта с двумя актиновыми, что делает ее чуть более светлой, чем обе зоны взаимопроникновения - это Н-полоса.


Ну и, наконец, как же это все действует? Всё начинается с поступления сигнала, который говорит о необходимости сокращения определённого симпласта, при этом митохондрии выбрасывают необходимое количество энергии, а на миофибриллы из эндоплазматической сети «высыпаются» ионы кальция. Высвобождение ионов запускает биохимическую реакцию, результатом которой становится то, что нити актина проникают глубже между нитями миозина (рис. 26, б). Z-линии как бы сдвигаются из-за сужения Н-полосы. Подобное укорочение всех саркомеров и приводит собственно к укорочению всей мышцы, то есть ее сокращению. Эту мышечную ткань называют еще поперечно-полосатой произвольной, так как мы сами решаем, какую мышцу «побеспокоить» на этот раз. Этого нельзя сказать о поперечно-полосатой сердечной (или непроизвольной) мышечной ткани , строящей миокард.


Последний вид мышц заложен во внутренних органах и сосудах. Гладкая мышечная ткань представлена клетками - миоцитами (рис. 27). Они имеют вытянутую веретенообразную форму. В каждой клетке расположено одно (редко два) ядро. Оно было создано приспособленным к назойливому желанию мышечной клетки почему-то все время сокращаться. В результате ядра миоцитов научились не отставать от хозяев и вместе с ними сжимаются, укорачиваются и даже пружинисто скручиваются вокруг своей оси. В цитоплазме также находятся миозиновые и актиновые нити, однако они не уложены в стройные миофибриллы. Достаточно беспорядочные, они образуют как бы паутину, заполняющую клетку изнутри, однако в целом принцип работы остается прежним (картинка II).


Картинка II. Гладкая мышечная ткань


Сокращение гладкого миоцита происходит относительно медленно и непроизвольно от нас. Кишечник, сосуды, мочеточник, как бы не спеша, помогают своими движениями прохождению по ним различных образований, будь то кровь или пищевая кашица. Но есть в организме гладкие миоциты «быстрого реагирования»: они складывают мышцы радужки глаза. Именно благодаря этим мышцам зрачок столь стремительно проявляет реакцию на свет (расширяясь или сужаясь).


Совокупность клеток и межклеточного вещества, сходных по происхождению, строению и выполняемым функциям, называют тканью . В организме человека выделяют 4 основных группы тканей : эпителиальную, соединительную, мышечную, нервную.

Эпителиальная ткань (эпителий) образует слой клеток, из которых состоят покровы тела и слизистые оболочки всех внутренних органов и полостей организма и некоторые железы. Через эпителиальную ткань происходит обмен веществ между организмом и окружающей средой. В эпителиальной ткани клетки очень близко прилегают друг к другу, межклеточного вещества мало.

Таким образом создается препятствие для проникновения микробов, вредных веществ и надежная защита лежащих под эпителием тканей. В связи с тем, что эпителий постоянно подвергается разнообразным внешним воздействиям, его клетки погибают в больших количествах и заменяются новыми. Смена клеток происходит благодаря способности эпителиальных клеток и быстрому .

Различают несколько видов эпителия – кожный, кишечный, дыхательный.

К производным кожного эпителия относятся ногти и волосы. Кишечный эпителий односложный. Он образует и железы. Это, например, поджелудочная железа, печень, слюнные, потовые железы и др. Выделяемые железами ферменты расщепляют питательные вещества. Продукты расщепления питательных веществ всасываются кишечным эпителием и попадают в кровеносные сосуды. Дыхательные пути выстланы мерцательным эпителием. Его клетки имеют обращенные кнаружи подвижные реснички. С их помощью удаляются из организма попавшие с воздухом твердые частицы.

Соединительная ткань . Особенность соединительной ткани – это сильное развитие межклеточного вещества.

Основными функциями соединительной ткани являются питательная и опорная. К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и плавающих в нем клеток крови. Эти ткани обеспечивают связь между организмами, перенося различные газы и вещества. Волокнистая и соединительная ткань состоит из клеток, связанных друг с другом межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах. На рыхлую похожа и жировая ткань. Она богата клетками, которые наполнены жиром.

В хрящевой ткани клетки крупные, межклеточное вещество упругое, плотное, содержит эластические и другие волокна. Хрящевой ткани много в суставах, между телами позвонков.

Костная ткань состоит из костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными тонкими отростками. Костная ткань отличается твердостью.

Мышечная ткань . Эта ткань образована мышечными . В их цитоплазме находятся тончайшие нити, способные к сокращению. Выделяют гладкую и поперечно-полосатую мышечную ткань.

Поперечно-полосатой ткань называется потому, что ее волокна имеют поперечную исчерченность, представляющую собой чередование светлых и темных участков. Гладкая мышечная ткань входит в состав стенок внутренних органов (желудок, кишки, мочевой пузырь, кровеносные сосуды). Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная мышечная ткань состоит из волокон вытянутой формы, достигающих в длину 10–12 см. Сердечная мышечная ткань, так же как и скелетная, имеет поперечную исчерченность. Однако, в отличие от скелетной мышцы, здесь есть специальные участки, где мышечные волокна плотно смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы. Сокращение мышц имеет огромное значение. Сокращение скелетных мышц обеспечивает движение тела в пространстве и перемещение одних частей по отношению к другим. За счет гладких мышц происходит сокращение внутренних органов и изменение диаметра кровеносных сосудов.

Нервная ткань . Структурной единицей нервной ткани является нервная клетка – нейрон.

Нейрон состоит из тела и отростков. Тело нейрона может быть различной формы – овальной, звездчатой, многоугольной. Нейрон имеет одно ядро, располагающееся, как правило, в центре клетки. Большинство нейронов имеют короткие, толстые, сильно ветвящиеся вблизи тела отростки и длинные (до 1,5 м), и тонкие, и ветвящиеся только на самом конце отростки. Длинные отростки нервных клеток образуют нервные волокна. Основными свойствами нейрона является способность возбуждаться и способность проводить это возбуждение по нервным волокнам. В нервной ткани эти свойства особенно хорошо выражены, хотя характерны так же для мышц и желез. Возбуждение предается по нейрону и может передаваться связанным с ним другим нейронам или мышце, вызывая ее сокращение. Значение нервной ткани, образующей нервную систему, огромно. Нервная ткань не только входит в состав организма как его часть, но и обеспечивает объединение функций всех остальных частей организма.

По происхождению различают три группы гладких (или неисчерченных) мышечных тканей - мезенхимные, эпидермальные и нейральные.

Гистогенез. Стволовые клетки и клетки-предшественники гладкой мышечной ткани, будучи уже детерминированными, мигрируют к местам закладки органов. Дифференцируясь, они синтезируют компоненты матрикса и коллаген базальной мембраны, а также эластин. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.

Структурно-функциональной единицей гладкой, или неисчерченной, мышечной ткани является гладкомышечная клетка, или гладкий миоцит - это веретеновидная клетка длиной 20-500 мкм, шириной 5-8 мкм. Ядро клетки палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены в цитоплазме около полюсов ядра. Аппарат Гольджи и гранулярная эндоплазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.

Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно, точнее косо-продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Эти участки хорошо видны на электронных микрофотографиях как плотные тельца.

Миозиновые филаменты находятся в деполимеризованном состоянии. Мономеры миозина располагаются рядом с филаментами актина. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует впячивания - кавеолы, в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков (здесь из пузырьков освобождается кальций). Это влечет за собой как полимеризацию миозина, так и взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и "миофибриллы" распадаются. Таким образом, актино-миозиновые комплексы существуют в гладких миоцитах только в период сокращения.

Гладкие миоциты располагаются без заметных межклеточных пространств и разделены базальной мембраной. На отдельных участках в ней образуются "окна", поэтому плазмолеммы соседних миоцитов сближаются. Здесь формируются нексусы, и между клетками возникают не только механические, но и метаболические связи. Поверх "чехликов" из базальной мембраны между миоцитами проходят эластические и ретикулярные волокна, объединяющие клетки в единый тканевой комплекс. Ретикулярные волокна проникают в щели на концах миоцитов, закрепляются там и передают усилие сокращения клетки всему их объединению.

Регенерация. Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается (рабочая гипертрофия клеток). Не исключена, однако, и пролиферация клеток (т.е. гиперплазия).

В составе органов миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки. Гладкая мышечная ткань мезенхимного происхождения представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы.

Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы к конкретным биологически активным веществам. Поэтому и на многие лекарственные препараты их реакция неодинакова

Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с железистыми секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез. В теле клетки располагаются ядро и органеллы общего значения, а в отростках - сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.

Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности.

В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы - суживающую и расширяющую зрачок.

Ткань - это совокупность клеток и межклеточного вещества, имеющих одинаковое строение, функции и происхождение.

В организме млекопитающих животных и человека выделяют 4 типа тканей: эпителиальной, соединительной, в которой можно выделить костную, хрящевую и жировую ткани; мышечной и нервной.

Ткань - расположение в организме, виды, функции, строение

Ткани - это система клеток и межклеточного вещества, имеющих одинаковое строение, происхождение и функции.

Межклеточное вещество - продукт жизнедеятельности клеток. Оно обеспечивает связь между клетками и формирует для них благоприятную среду. Оно может быть жидким, например, плазма крови; аморфным - хрящи; структурированным - мышечные волокна; твёрдым - костная ткань (в виде соли).

Клетки ткани имеют различную форму, которая определяет их функцию. Ткани делятся на четыре типа:

  • эпителиальная - пограничные ткани: кожа, слизистая;
  • соединительная - внутренняя среда нашего организма;
  • мышечная ткань;
  • нервная ткань.

Эпителиальная ткань

Эпителиальные (пограничные) ткани - выстилают поверхность тела, слизистые оболочки всех внутренних органов и полостей организма, серозные оболочки, а также формируют железы внешней и внутренней секреции. Эпителий, выстилающий слизистую оболочку, располагается на базальной мембране, а внутренней поверхностью непосредственно обращен к внешней среде. Его питание совершается путём диффузии веществ и кислорода из кровеносных сосудов через базальную мембрану.

Особенности: клеток много, межклеточного вещества мало и оно представлено базальной мембраной.

Эпителиальные ткани выполняют следующие функции:

  • защитная;
  • выделительная;
  • всасывающая.

Классификация эпителиев. По числу слоёв различают однослойный и многослойный. По форме различают: плоский, кубический, цилиндрический.

Если все эпителиальные клетки достигают базальной мембраны, это однослойный эпителий, а если с базальной мембраной связаны только клетки одного ряда, а другие свободны, - это многослойный. Однослойный эпителий может быть однорядным и многорядным, что зависит от уровня расположения ядер. Иногда одноядерный или многоядерный эпителий имеет мерцательные реснички, обращенные во внешнюю среду.

Многослойный эпителий Эпителиальная (покровная) ткань, или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

Железистый эпителий Эпителий отделяет организм (внутреннюю среду) от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией).

Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток - желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

Однослойный плоский эпителий - выстилает поверхность серозных оболочек: плевра, лёгкие, брюшина, перикард сердца.

Однослойный кубический эпителий - образует стенки канальцев почек и выводные протоки желёз.

Однослойный цилиндрический эпителий - образует слизистую желудка.

Каёмчатый эпителий - однослойный цилиндрический эпителий, на наружной поверхности клеток которого имеется каёмка, образованная микроворсинками, обеспечивающими всасывание питательных веществ - выстилает слизистую тонкого кишечника.

Мерцательный эпителий (реснитчатый эпителий) - псевдомногослойный эпителий, состоящий из цилиндрических клеток, внутренний край которых, т. е. обращенный в полость или канал, снабжён постоянно колеблющимися волосковидными образованиями (ресничками) - реснички обеспечивают движение яйцеклетки в трубах; в дыхательных путях удаляет микробов и пыль.

Многослойный эпителий расположен на границе организма и внешней среды. Если в эпителии протекают процессы ороговения, т. е. верхние слои клеток превращаются в роговые чешуйки, то такой многослойный эпителий называется ороговевающим (поверхность кожи). Многослойный эпителий выстилает слизистую рта, пищевой полости, роговую глаза.

Переходный эпителий выстилает стенки мочевого пузыря, почечных лоханок, мочеточника. При наполнении этих органов переходный эпителий растягивается, а клетки могут переходить из одного ряда в другой.

Железистый эпителий - образует железы и выполняет секреторную функцию (выделяет вещества - секреты, которые либо выводятся во внешнюю среду, либо поступают в кровь и лимфу (гормоны)). Способность клеток вырабатывать и выделять вещества, необходимые для жизнедетельности организма, называется секрецией. В связи с этим такой эпителий получил также название секреторного эпителия.

Соединительная ткань

Соединительная ткань Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь - клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами - от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

Костная ткань

Костная ткань Костная ткань, образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

Хрящевая ткань

Хрящевая ткань состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

Различают три разновидности хрящевой ткани: гиалиновую, входящую в состав хрящей трахеи, бронхов, концов ребер, суставных поверхностей костей; эластическую, образующую ушную раковину и надгортанник; волокнистую, располагающуюся в межпозвоночных дисках и соединениях лобковых костей.

Жировая ткань

Жировая ткань похожа на рыхлую соединительную ткань. Клетки крупные, наполнены жиром. Жировая ткань выполняет питательную, формообразующую и терморегулирующую функции. Жировая ткань подразеляется на два типа: белую и бурую. У человека преобладает белая жировая ткань, часть ее окружает органы, сохраняя их положение в теле человека и другие функции. Количество бурой жировой ткани у человека невелико (она имеется главным образом у новорожденного ребенка). Главная функция бурой жировой ткани - теплопродукция. Бурая жировая ткань поддерживает температуру тела животных во время спячки и температуру новорожденных детей.

Мышечная ткань

Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения - произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани - гладкую (неисчерченную) и поперечнополосатую (исчерченную).

Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином.

Нервная ткань

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

Нейрон - основная структурная и функциональная единица нервной ткани. Главная его особенность - способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела - дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце - аксоны. Аксоны образуют нервные волокна.

Нервный импульс - это электрическая волна, бегущая с большой скоростью по нервному волокну.

В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

Теперь всю полученную информацию мы можем объединить в таблицу.

Типы тканей (таблица)

Группа тканей

Виды тканей

Строение ткани

Местонахождение

Эпителий Плоский Поверхность клеток гладкая. Клетки плотно примыкают друг к другу Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов Покровная, защитная, выделительная (газообмен, выделение мочи)
Железистый Железистые клетки вырабатывают секрет Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)
Мерцательный (реснитчатый) Состоит из клеток с многочисленными волосками(реснички) Дыхательные пути Защитная (реснички задерживают и удаляют частицы пыли)
Соединительная Плотная волокнистая Группы волокнистых, плотно лежащих клеток без межклеточного вещества Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза Покровная, защитная, двигательная
Рыхлая волокнистая Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела
Хрящевая Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин
Костная Живые клетки с длинными отростками, соединенные между собой, межклеточное вещество - неорганические соли и белок оссеин Кости скелета Опорная, двигательная, защитная
Кровь и лимфа Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами - сыворотка и белок фибриноген) Кровеносная система всего организма Разносит О 2 и питательные вещества по всему организму. Собирает СО 2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)
Мышечная Поперечно-полосатая Многоядерные клетки цилиндрической формы до 10 см длины, исчерченные поперечными полосами Скелетные мышцы, сердечная мышца Произвольные движения тела и его частей, мимика лица, речь. Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца. Имеет свойства возбудимости и сократимости
Гладкая Одноядерные клетки до 0,5 мм длины с заостренными концами Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи Непроизвольные сокращения стенок внутренних полых органов. Поднятие волос на коже
Нервная Нервные клетки (нейроны) Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре Образуют серое вещество головного и спинного мозга Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов. Нервная ткань обладает свойствами возбудимости и проводимости
Короткие отростки нейронов - древовидноветвящиеся дендриты Соединяются с отростками соседних клеток Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела
Нервные волокна - аксоны (нейриты) - длинные выросты нейронов до 1,5 м длины. В органах заканчиваются ветвистыми нервными окончаниями Нервы периферической нервной системы, которые иннервируют все органы тела Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) - к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные(двигательные)
Сохранить в соцсетях:

Мышечная ткань: виды, особенности строения, месторасположение в организме

Мышечные ткани (textus musculares) – это специализированные ткани, которые обеспечивают движение (перемещение в пространстве) организма в целом, а также его частей и внутренних органов. Сокращение мышечных клеток или волокон осуществляется с помощью миофиламентов и специальных органелл – миофибрилл и является результатом взаимодействия молекул сократительных белков.

Согласно морфункциональной классификации, мышечные ткани делят на две группы:

I – поперечнополосатая (исчерченная) мышечная ткань – содержит постоянно комплексы актиновых и миозиновых миофиламентов – миофибриллы и имеет поперечную исчерченность;

II – гладкая (неисчерченная) мышечная ткань – состоит из клеток, которые постоянно содержат только актиновые миофиламенты и не имеют поперечной исчерченности.

Поперечнополосатая мышечная ткань

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную . Обе эти разновидности развиваются из мезодермы .

Поперечнополосатая скелетная мышечная ткань. Эта ткань образует скелетные мышцы, мышцы рта, глотки, частично пищевода, мышцы промежности и др. В разных отделах она имеет свои особенности. Обладает высокой скоростью сокращения и быстрой утомляемостью. Этот тип сократительной деятельности называется тетаническим . Поперечнополосатая скелетная мышечная ткань сокращается произвольно в ответ на импульсы, идущие от коры больших полушарий головного мозга. Однако часть мышц (межреберные, диафрагма и др.) имеет не только произвольный характер сокращения, но и сокращается без участия сознания под влиянием импульсов из дыхательного центра, а мышцы глотки и пищевода сокращаются непроизвольно.

Структурной единицей является поперечнополосатое мышечное волокно – симпласт, цилиндрической формы с округлыми или заостренными концами, которыми волокна прилежат друг к другу или вплетаются в соединительную ткань сухожилий и фасций.

Сократительным аппаратом их являются поперечнополосатые миофибриллы , которые образуют пучок волоконец. Это белковые нити, расположенные вдоль волокна. Длина их совпадает с длиной мышечного волокна. Миофибриллы состоят из темных и светлых участков – дисков . Так как темные и светлые диски всех миофибрилл одного мышечного волокна располагаются на одном уровне, образуется поперечная исчерченность; поэтому мышечное волокно называется поперечнополосатым.Темные диски в поляризованном свете имеют двойное лучепреломление и называются анизотропными, или А-дисками; светлые диски не имеют двойного лучепреломления и называются изотропными, или I-дисками.

Разная светопреломляющая способность дисков обусловлена их различным строением. Светлые (I) диски однородны по составу: образованы только параллельно лежащими тонкими нитями – актиновыми миофиламентами , состоящими преимущественно из белка актина , а также тропонина и тропомиозина . Темные (А) диски неоднородны: образованы как толстыми миозиновыми миофиламентами , состоящими из белка миозина , так и частично проникающими между ними тонкими актиновыми миофиламентами .

В середине каждого I–диска проходит темная линия, которая называется Z–линией, или телофрагмой . К ней прикрепляется один конец актиновых нитей. Участок миофибриллы между двумя телофрагмами называется саркомером . Саркомер – структурно-функциональная единица миофибриллы. В центре A-диска можно выделить светлую полосу, или зону Н , содержащую только толстые нити. В середине ее выделяется тонкая темная линия М, или мезофрагма . Таким образом, каждый саркомер содержит один А-диск и две половины I-диска .

Поперечнополосатая сердечная мышечная ткань. Образует миокард сердца. Содержит, как и скелетная, миофибриллы, состоящие из темных и светлых дисков. Состоит из клеток – кардиомиоцитов , связанных между собой вставочными дисками. При этом образуются цепочки кардиомиоцитов – функциональные мышечные волокна, которые анастомозируют между собой (переходят одно в другое), образуя сеть. Такая система соединений обеспечивает сокращение миокарда как единого целого. Сокращение сердечной мышцы непроизвольное , регулируется вегетативной нервной системой.

Среди кардиомиоцитов различают:

· сократительные (рабочие) кардиомиоциты – содержат меньше миофибрилл, чем скелетные мышечные волокна, но очень много митохондрий, поэтому сокращаются с меньшей силой, но долго не утомляются; с помощью вставочных дисков осуществляют механическую и электрическую связь кардиомиоцитов;

· атипичные (проводящие) кардиомиоциты – образуют проводящую систему сердца для формирования и проведения импульсов к сократительным кардиомиоцитам;

· секреторные кардиомиоциты – располагаются в предсердиях, способны вырабатывать гормоноподобный пептид – натрий-уретический фактор , снижающий артериальное давление.

Гладкая мышечная ткань

Развивается из мезенхимы, располагается в стенке трубчатых органов (кишечник, мочеточник, мочевой пузырь, кровеносные сосуды), а также радужке и цилиарном (ресничном) теле глаза и мышцах, поднимающих волосы в коже.

Гладкая мышечная ткань имеет клеточное строение (гладкий миоцит) и обладает сократительным аппаратом в виде гладких миофибрилл . Она сокращается медленно и способна длительно находиться в состоянии сокращения, потребляя относительно малое количество энергии и не утомляясь. Такой тип сократительной деятельности называется тоническим . К гладкой мышечной ткани подходят вегетативные нервы, и в отличие от скелетной мышечной ткани она не подчиняется сознанию, хотя и находится под контролем коры больших полушарий головного мозга.

Гладкомышечная клетка имеет веретенообразную форму и заостренные концы. В ней есть ядро, цитоплазма (саркоплазма), органеллы и оболочка (сарколемма). Сократительные миофибриллы располагаются по периферии клеток вдоль ее оси. Эти клетки плотно прилежат друг к другу. Опорным аппаратом в гладкой мышечной ткани являются тонкие коллагеновые и эластические волокна, расположенные вокруг клеток и связывающие их между собой.


Похожая информация.




Загрузка...
Top